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ABSTRACT  
Mathematical modeling is a key feature in analysis and control of dynamic systems. Furthermore, system identification’s approach 
consists in mathematical expressions from experimental data taken from different processes. In this context, this work describes sev-
eral modeling and identification techniques for determining the behavior of dynamic systems over time. This work emphasizes the 
main advantages and/or disadvantages of the different mathematical formulations of modeling and identification. This article pre-
sents a comprehensive review of the main modeling and identification techniques from a parametric and non-parametric perspec-
tive. Parametric and non-parametric models were formulated through their respective equations in order to apply them in a case of 
study. The experimental data is taken from an electrical machine, a DC motor from a didactic platform in which a set of known 
inputs are applied to measure the motor speed, then the output data is used as part of the modeling and identification process. The 
article concludes with the results provided by the comparison of modeling and identification techniques under study where simple 
solutions such as first order systems are required to model a linear dynamics DC motor over other complex mathematical formula-
tions. 
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RESUMEN 
El modelado matemático es una característica muy importante en relación con el análisis y control de sistemas dinámicos. 
Además, la identificación del sistema es un enfoque para construir expresiones matemáticas a partir de datos experimentales 
tomados de procesos. En este contexto, este trabajo describe varias técnicas de modelado e identificación que son herramientas 
poderosas para determinar el comportamiento de los sistemas dinámicos en el tiempo. En Este trabajo se enfatiza las principales 
ventajas y/o desventajas que tienen las diferentes formulaciones matemáticas de modelación e identificación. También se 
presenta una revisión exhaustiva de las principales técnicas de modelado e identificación desde una perspectiva paramétrica y no 
paramétrica. Se formularon los modelos paramétricos y no paramétricos por medio de sus ecuaciones para aplicarlos en un caso 
de estudio. Los datos experimentales se toman de una máquina eléctrica, un motor de DC de una plataforma didáctica en la cual 
se aplican un conjunto de entradas conocidas para medir la velocidad del motor y utilizar estos datos como parte del proceso de 
modelación e identificación. El artículo concluye con las soluciones proporcionadas por la comparación de técnicas de 
modelación e identificación donde soluciones sencillas como los sistemas de primer orden son precisos para modelar un motor DC 
de dinámica lineal sobre otras formulaciones matemáticas más complejas. 
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Physical systems describe the environment around us. These 
systems, regardless of their activity, are represented through a 
mathematical equation where its dynamics are described (Feld-
man et al, 2018). This means the current system output depends 
on a set of previous values that make the plant have a time-
domain behavior (Vaidyanathan et al, 2016). The mathematical 
model is the start point for designing any closed-loop regulator, 
from key algorithms such as PID control (Proportional-Integral-
Derivative) to MPC (Model-based Predictive Control). Other 
areas in engineering and sciences utilize mathematical models for 
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dynamic analysis through simulation, considering all the criteria 
to obtain results as much close as the process in site (Ullrich et 
al, 2017). 

Mathematical equations in dynamic systems are classified in linear 
and non-linear expressions. In the case of linear schemes, they 
are desirable by most control system designers due to mathe-
matical simplicity and their flexible implementation through 
hardware platforms with low-level programming. However, most 
of the industrial systems are non-linear and the need to be im-
plemented in advanced hardware platforms with programming 
complexity. Other alternatives such as non-linear modeling or a 
linear approximation in a process operating point are used to 
reduce mathematical complexity (Oliveira et al, 2019). 

For example, in (Gonzales et al, 2017) the plant variables are 
temperature and molar concentration. These variables take a 
considerable time to reach operating points, it means in a period 
of minutes or hours the set-point is accomplished. This feature 
of slow dynamics makes certain control system designers use 
equivalent modelling systems to generate a smooth law of con-
trol. Consequently, the use of a first-order response showed the 
plant performance in a stable operating point, but a deep analysis 
is not carried out due to the high non-linearities in the process. 
Other science fields such as, biological structures, use a system-
order reduction technique in large-scale models like Snowden et 
al, 2018, which most of the processes are non-linear systems. In 
this work, the authors studied the biochemical reaction net-
works, which are high dimensional systems that are troublesome 
to study at the simulation level because of the high computation-
al complexity generated in the mathematical expressions. Subse-
quently, every component is grouped to develop an entire simu-
lation, which generates high-level computational effort so that 
results take a long time to be produced. 

In electrical systems, (Schilders et al, 2018) obtained a simple and 
smooth model for the pack- aging structure around LED lamps. 
On the other hand, these lamps are efficient in energy consump-
tion, but there is still a latent problem that refers to heat genera-
tion. At a constructive level, it is crucial to have a proper math-
ematical model of the lamp structure because these expressions 
generate constructive solutions to mitigate the effects of tem-
perature for long-time work. 

In electrical power systems are frequent the fast-dynamic re-
sponses that establish several non-linear expressions. Such is the 
case of (Gonzales et al, 2018), where the power generation of a 
solid-state transformer is carried out through an analysis of a 
black box system where a first-order curve is obtained after a 
step input at the operating point. According to the results, the 
power consumption regulator is designed in a predefined range 
of power generation. These criteria offer several advantages for 
designing a control system due to the mathematical model avoids 
non-linear phenomena present for the nature of the load. 

Complex systems such as quadruple-tank process (Herrera et al, 
2018), have several non-linear expressions where the plant is a 
multivariable array of four tanks and two valves. The control 
objective is to set a level value at the upper tanks. Apart from 
having non-linear equations, the process defines a high degree of 
interaction of its variables. Particularly, the fluid level of the tank 
number one depends on the control action of the valve number 
two and vice versa. This aspect requires a reduced-order model 
for a flexible simulation at operating points and regulation on the 
state variables is not limited by mathematical model complexity 
(Sato, 2017).      

However, due to the diverse choices in modelling and identifica-
tion techniques, only elemental models are adopted to represent 
physical systems. Thus, other valid options give several ad-
vantages for system simulation and control design but are set 
aside for key regulation alternatives. For example, models that 
consider standard responses, such as approximations to first or 
second-order systems, may or may not incorporate a delay are 
used extensively in processes control. Although this method is 
valid, some control designers do not consider other alternatives 
that provide more reliable results such as the least-squares algo-
rithm and other similar options. Particularly, in cases where the 
acquisition of data is accomplished from a small number of sam-
ples, a trend curve of the process should be considered, which is 
performed by non-parametric models. Particularly, in cases 
where the acquisition of data is accomplished from a small num-
ber of samples, a trend curve of the process should be consid-
ered, which is performed by non-parametric models (Almeida et 
al, 2017). 

In consequence, this paper reviews the different existing alterna-
tives to develop modelling and identification techniques consider-
ing the most used parametric and non-parametric algorithms. 
The reader will be able to find different preferences to model 
and identify a plant. Also, this work applied a set of identification 
techniques through a training educational plant, an electric DC 
motor on a didactic platform, in which the acquisition of speed 
data is performed. The present work is shown as follows, in the 
next section a synthesis of the parametric and non-parametric 
models is shown, in the next section the mathematical descrip-
tion of the algorithms used in the work and their characteristics 
is reviewed and finally the respective conclusions of the present 
work are generated.  

Introduction  

A DC motor is an electromechanical machine that converts 
electrical energy y rotational mechanical energy. In Fig. 1, the 
scheme of a DC motor is presented, where there are two main 
components: the stator and the rotor. The stator receives the 
electrical energy, and the rotor performs the rotational move-
ment in order to apply mechanical torque to a load (Gerling, 
2016). 

 

Figure 1. Electromechanical scheme of a DC motor. 
Source: Rigatos, 2016 

The following parameters define the mathematical model of a 
DC motor: 

• Vf: Voltage of the field circuit. 
• Rf: Resistance of the field circuit. 
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• Lf: Inductance of the field circuit. 
• If: Current of the field circuit. 
• V: Voltage of the armature circuit. 
• R: Resistance of the armature circuit. 
• L: Inductance of the armature circuit. 
• I: Current of the armature circuit. 
• Γ: Momentum of the shaft. 
• ω: Rotational velocity of the shaft. 
• J: Momentum of inertia of the shaft. 
• Γd: Momentum on the mechanical load. 
• ωd: Rotational velocity of the mechanical load. 

The transfer function is obtained analyzing the motor controlled 
by only the armature voltage. The mathematical expression that 
relates the input (applied voltage to the armature) and output 
(position of the shaft) is displayed below: 

𝐺(𝑠) = 	
Ω(s)
𝑉(𝑠) = 	

𝑘!
(𝐿𝑠 + 𝑅)(𝐽𝑠 + 𝐵) + 𝑘"𝑘!

 
(1) 

Where: 

• kT: Mechanical constant. 

• kB: Electrical constant. 

The constants are related with the momentum and the back 
electromagnetic force through the following relations. 

Γ(s) = 	𝑘!𝐼(𝑠) 
(2) 

𝐸"(𝑠) = 	𝑘"𝜔(𝑠) 
(3) 

Finally, the angular position can be found depending on the angu-
lar velocity values due to the following expression: 

Ω(𝑠) =
1
𝑠 𝜔(𝑠) (4) 

Methods 
Parametric methods  

The following techniques describe the main-used algorithms for 
modeling and identification. The first-order response to a step 
function is a technique described by the exponential response in 
time that explains dynamic behavior. A step input signal is set in 
the system and state variables will begin to change until the 
process stabilizes in an operating value. A time delay factor is 
added in most processes due to slow-dynamics reaction. 

In this method, the time constant τ is taken from the 63.2 % of 
the output variable at stable state. 

The constant of the transfer function where the output and input 
are correlated is: 

𝐾 =	𝑌#$/𝑈 
(5) 

Where 𝑌#$ is the estimated output and U the input of the sys-
tem. Finally, the transfer function is represented below: 

𝐺(𝑠) =
𝐾𝑒%&$

1 + 𝒯𝑠 (6) 
Real systems generally contain a dead time zone t denoted by 
𝑒%&$. 

The second-order response is like first-order approximation 
with dead time, but the transfer function considers two poles at 
denominator. The main advantage in this technique is the analysis 
of damped systems based its damping factor. The transfer func-
tion is presented as follows: 

𝐺(𝑠) = 	
𝐾𝑒%$&

(1 + 𝒯'𝑠)(1 + 𝒯(𝑠)
 (7) 

The convolution method (You et al, 2018) uses a mathematical 
operator to generate a third function from the superposition of 
two known functions. The convolution equation for a Linear 
Time Invariant (LTI) discrete system is: 

ℎ[𝑘] − 𝑢[𝑘] =@ℎ[𝑘] ∗ 𝑢[𝑖 − 𝑘]
)

*+,

        
(8) 

This produces the following expression in discrete time: 

𝑌(𝓏) = 𝐻(𝓏)𝑈(𝓏) 
(9) 

For the present case, the transfer discrete function H(z) is un-
known. A de- convolution method is applied in order to obtain 
the data from the transfer function. 

The impulsive response (Ke et al, 2017) method models a system 
from the output behavior of the process when an impulse input 
is applied. The impulse response from a signal is found from a 
step function: 

𝑔𝑒(𝑘) =
𝑦(𝑘) − 𝑦(𝑘 − 1)

𝛼  
(10) 

Using the step data, it is possible to obtain de impulse discrete 
response. The sinusoidal response data (Faifer et al, 2018) for 
the system is achieved with a frequency operating point designed 
from a dynamics analysis. The mathematical relation used in this 
case is: 

𝐺H𝑒-.I = @ 𝑔(𝑡)𝑒%-.
/

&+%/

      
(11) 

The spectrum graphic shows that the fundamental frequency 
value is located around zero. This is close to the value of fre-
quency used in the tests applied to the plant. 
 
The Fourier transform (Devadasu et al, 2016) is used for analyz-
ing systems in the frequency domain. The transfer function in this 
kind of systems is: 
 

𝑌(𝑗𝜔) = 𝐺(𝑗𝜔)𝑈(𝑗𝜔) (12) 
Where, the estimated function is represented as follows: 

 

𝐺#$&H𝑒-.I =
𝑌0(𝑗𝜔)
𝑈0(𝑗𝜔)

     
(13) 

The Wiener-Hopf equation (Slavakis et al, 2011) is a representa-
tion of an autocorrelated value and its respective transfer func-
tion. The mathematical expression in this technique is: 
 

𝑔 = 	𝑅𝑢𝑢%'𝑟𝑢𝑦 (14) 
Where, Ruu is a matrix that contains the autocorrelated values 
from the input signal, and 𝑟𝑢𝑦 is the vector with the cross-
correlation values from the input and output signal. 
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The power spectrum (Cho et al, 2016) from a signal is taken 
from the Wiener-Hopf relation through DFT of the autocorrela-
tion and cross-correlation values. 

 

Φuu = @ 𝑟𝑢𝑢(𝑙)𝑒%-.
/

&+%/

 

 

     
(15) 

Φuu = @ 𝑟𝑢𝑦(𝑙)𝑒%-.
/

&+%/

    (16) 

 

Non-parametric methods  

The main objective in this technique is to minimize a cost func-
tion that contains the error between the real data and the esti-
mated data (Choudhary et al, 2016). The parameters estimated 
are found through the following expression: 
 

𝜃 = (𝜙´𝜙)%'𝜙´𝑦 (17) 
Where, φ is a function called regressor and it contains the values 
of the time of the input/output parameters. 

This technique is very similar to the last one. The only difference 
is a matrix term included in the parametric function that helps to 
minimize the error. This matrix is diagonal, and a higher value 
means a great effort in the parametric expression to diminish the 
error. 

𝜃 = (𝜙´𝑊𝜙)%'𝜙´𝑊𝑦 
(18) 

The recursive WLSE is useful when there is data of a process and 
these values are obtained off-line. The parametric equation 
changes and other terms are incorporated in the least square 
minimization in order to add the new data. 

𝜃𝓌𝑠𝑒(𝑘 + 1) = 𝜃𝓌𝑠𝑒(𝑘) + 𝐾1(𝑘 + 1)(𝑦(𝑘 + 1)
− 𝜙´(𝑘 + 1)𝜃𝓌𝑠𝑒(𝑘)) (19) 

In this context, the estimated data will add all values that come 
after the first(s) one(s). It is always necessary to break the iner-
tial feature of the algorithm to avoid problems with convergence. 
 
Lastly, an instrumental variable is a technique that helps to identi-
fy a system when the plant has values with cross-correlation 
between the output, noise and the regressor. In this approach, 
the parametric expression incorporates a variable x that is an 
instrumental value. This value helps the system to be not de-
pendent of the cross-correlation between their variables and 
offer and estimated output using a process like LSE. 

 
𝜃𝑢𝑣(𝑘) = (𝑋´Φ)%'𝑋𝑌 (20) 

Results 

The plant is a training module from National Instruments that 
contains sensors like an LM35 and incremental encoder. The 
actuators are: DC motor, stepper motor and a halogen lamp 
(Fig. 2). 

 

Figure 2. EPC plant from National Instruments. 
Source: Chico, 2015 

The training module is connected to the PC through a DAQ 
(data acquisition device) and the software interface is imple-
mented in LABVIEWTM, where the data from the DC motor 
was acquired. 

To analyze the differences from the identification models pre-
sented in this paper, the mathematical analysis is performed 
based on the data of the DC motor. The comparison between 
parametric and non-parametric models is shown In Fig. 3, where 
the methods considered are First-Order Response (FOR), Re-
cursive Least Square Estimation (RLSE), Weighted Least Square 
Estimation (WLSE), Recursive Weighted Least Square Estimation 
(RWLSE) and Instrumental Variable (IV). The input signal was set 
at 3[V] to develop in the motor a speed of 556 [rad/s]. 

 

Figure 3. Process identification from different methods. 
Source: Author 

 

The data acquisition for angular velocity values was taken 
through an incremental encoder. The encoder pulses were trans-
formed into velocity values for each one of the proposed meth-
ods. 
 
The acquired data were compared with velocity measurements 
taken from the DAQ device. Fig. 3 shows a comparative visuali-
zation of the response of each identification method and thus be 
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able to evaluate the most reliable options for a dynamic analysis 
or controller design. 
 
Differences in the rise time of each method are observed. Some 
identification methods are more accurate in dynamic time than 
others. Therefore, an error graph is made in Fig. 4. 
 
To quantify the error values in each of the identification process-
es, the criteria of the Integral of the Absolute value of the Error 
(IAE) and the Integral of the Time weighted Absolute Error 
(ITAE) are used as evaluation principles of each of the proposed 
methods.

 

Figure 4. Error curves from identification. 
Source: Author 

 

𝐼𝐴𝐸 = Y |𝑒(𝑡)|	𝑑𝑡
&

,
      

(21) 
 

𝐼𝑇𝐴𝐸 = Y 𝑡|𝑒(𝑡)|	𝑑𝑡
&

,
      

(22) 
 

The IAE and ITAE values are shown in Fig. 5. 

 

Figure 5. Performance indexes for identification processes. 
Source: Author 

The data analysis describes the more preferred option, the FOR 
method. Performance values are: IAE = 28.39 and ITAE = 117.13. 
Despite its simplicity, this method represents an attractive op-
tion for structures with slow dynamics with a delay time. In 
other cases, approximations to this function can be performed to 
develop a linear controller with versatility compared to more 
alternatives. Other methods like the RWLSE (IAE = 66.03 and 
ITAE = 165.15) or IV (IAE = 56.5 and ITAE = 183.38) are useful 
for plants with fast or slow dynamics because of the versatility to 
choose the adequate mathematical expression to model any 
system with more precision over other methods such as RLSE 
(IAE = 107.93 and ITAE = 534.82). In this context, for a linear 
plant such as a DC motor, a simpler model can capture the 
dynamics and steady state features with high precision. This 
method is useful for designing complex control algorithms from 
simpler mathematical models.  
 

Conclusions 

Some methods, like classic identification models, are practical 
proceedings for a lot of cases in the identification world. Also, it 
is always desirable to achieve a more accurate model when a 
control algorithm is going to be implemented in any plant. The 
LSE technique offers more computational process to a control-
ler. However, is more accurate due to the minimizing of the cost 
function. 

Frequency analysis is not accurate when a Bode plot is displayed. 
Due to the noise and other perturbations, the frequency analysis 
can be confused presenting a magnitude and phase plots with 
poles that are not necessary presented in the system. 

A priori, it is necessary to take as much data as the process can 
offer to the control engineer. Furthermore, in the DC motor 
case, it has a fast dynamic and for a time of more than 1seg 
achieves a stable state condition that offers redundant infor-
mation unless a change in the set-point or an external perturba-
tion were implemented in the plant. 
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