Intake manifold analysis of a hybrid SUV with different materials using CFD simulation

  • Edwin Rolando Guamán Narváez Universidad de las Fuerzas Armadas ESPE, Ecuador https://orcid.org/0000-0002-6305-6242
  • Nelson Humberto Luna Suárez Universidad de las Fuerzas Armadas ESPE, Ecuador
  • William Vinicio Guaña Fernández Universidad Tecnológica Equinoccial, Ecuador
  • Doris Lizbeth Aquino Santos Tecnóloga Automotriz, Ecuador
  • Jorge Darío Díaz Vinueza Universidad Central del Ecuador https://orcid.org/0000-0003-0496-1872
Keywords: CFD simulation, intake manifold, computational fluid dynamics, structural analysis

Abstract

The elements that make up the internal combustion engines have improved over the years as a result of efficiency studies performed, the intake manifolds are elements that allow the air-fuel mixture to enter the cylinders after which they are compressed in the combustion chamber. The purpose of this research was to check the intake manifold of a hybrid SUV, with different materials such as: Nylon (Polyamide), Aluminum 3.0205 (EN-AW1200) and Cast Iron O.6010 (EN-GJL-100). The synthetic method was used for the collection of bibliographic data that were used in the elaboration of the CAD model. In addition, this same method was used to get the first conditions and the execution of the CFD simulation. The results showed that the most suitable material for the manufacture of this auto part is Polyamide Nylon with a gain in incoming velocity of 32.408 m/s, superior to Cast Iron which generated a velocity of 32.083 m/s, and better than Aluminum which generates a speed of 31.194 m/s.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1 A. Cebula, P. Swiatek, and S. Kowalczyk, “A numerical analysis of the air flow through the IC engine intake manifold,” Prog. Comput. Fluid Dyn. An Int. J., vol. 19, no. 1, p. 63, 2019, doi: 10.1504/pcfd.2019.10018846.

2 E. Arroyo, “Optimización del múltiple de escape para un vehículo de competición con motor de combustión interna de cuatro tiempos y cuatro cilindros. ” 2019.

3 W. Palacios Quiroz, “Diseño, análisis y construcción de un múltiple de admisión para un vehículo de competencia de pista Chevrolet Forsa 1.3,” Panorama, pp. 5–20, 2014.

4 C. Birtok-Baneasa, A. Budiul-Berghian, V. A. Socalici, and R. Bucevschi, “Simulation of thermal transfer through the polyamide intake manifold,” Mater. Plast., vol. 56, no. 1, pp. 191–194, 2019, doi: 10.37358/mp.19.1.5149.

5 A. Jeevan Sai, R. Balamurugan, C. Servant, F. Ravet, and S. A. Kumar, Applying ECFM combustion model to spark ignition engine, comparison with experimental data. 2019.

6 F. Sedlacek and M. Skovajsa, “Optimization of an Intake System Using CFD Numerical Simulation,” Proc. Manuf. Syst., vol. 11, no. 2, pp. 71–76, 2016, [Online]. Available: http://icmas.eu/Journal_archive_files/Vol_11-Issue2_2016_PDF/71-76_Sedlacek_01.pdf.

7 D. K. Sahoo and R. Thiya, “Coupled CFD–FE analysis for the exhaust manifold to reduce stress of a direct injection-diesel engine,” Int. J. Ambient Energy, vol. 40, no. 4, pp. 361–366, 2019, doi: 10.1080/01430750.2017.1399457.

8 K. Bajpai, A. Chandrakar, A. Agrawal, and S. Shekhar, “CFD Analysis of Exhaust Manifold of SI Engine and Comparison of Back Pressure using Alternative Fuels,” IOSR J. Mech. Civ. Eng., vol. 14, no. 01, pp. 23–29, 2017, doi: 10.9790/1684-1401012329.

9 S. Y. Construcción et al., “Escuela politécnica del ejército extensión latacunga,” 2013.

10 M. Safari, M. Ghamari, and A. Nasiritosi, “Intake manifold optimization by using 3-D CFD analysis,” SAE Tech. Pap., no. 724, 2003, doi: 10.4271/2003-32-0073.

11 M. Morandin et al., “( 12 ) United States Patent ( 10 ) Patent No .: ( 45 ) Date of Patent :,” Elsevier Ltd, 2017.

12 D. A. Caughey, “Computational fluid dynamics,” Comput. Sci. Handbook, Second Ed., pp. 30-1-30–18, 2004, doi: 10.1017/cbo9780511780066.

13 K. Sathishkumar, R. Soundararajan, G. Dinesh, and S. Surjith, “Design and air flow analysis in intake manifold with different cross section using CFD,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4, pp. 706–711, 2019.

14 S. Guo, S. Huang, and M. Chi, “Optimized design of engine intake manifold based on 3D scanner of reverse engineering,” Eurasip J. Image Video Process., vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0304-8.

15 J. Hemanandh, S. Ganesan, R. Devaraj, S. P. Venkatesan, and G. Ramprakash, “Robust design approach for intake manifold of the 1 litre turbo charger intercooler diesel engines,” Int. J. Ambient Energy, vol. 41, no. 11, pp. 1214–1226, 2020, doi: 10.1080/01430750.2018.1507935.
Published
2021-11-30
Stats
Abstract 160
PDF (Español (España)) 98 HTML (Español (España)) 0
How to Cite
Guamán Narváez, E. R., Luna Suárez, N. H., Guaña Fernández, W. V., Aquino Santos, D. L., & Díaz Vinueza, J. D. (2021). Intake manifold analysis of a hybrid SUV with different materials using CFD simulation. Ecuadorian Science Journal, 5(3), 27-40. https://doi.org/10.46480/esj.5.3.142
Section
Research Paper
Share |
Citation