Statistical model to associate variables for determining the degree of linear dependence

Authors

  • Xavier Álvarez Universidad de Guayaquil Author
    • Steeven Ambuludí Universidad de Guayaquil Author
      • Maria Tola Romero Universidad de Guayaquil Author

        DOI:

        https://doi.org/10.46480/esj.4.1.51

        Keywords:

        Immigrants, Statistical analysis, Contingency tables, Variable relationships

        Abstract

        In recent years the flow of migration has increased exponentially, this could generate conflicts in the countries that host migrants, which is why through this research work and through a database obtained from the National Statistics Institute and Censuses (INEC) about the entry and exit of migrants from this country, a sample of one million people was considered, this analysis seeks to determine the percentage of foreigners entering Ecuador and also the most frequent countries of origin of For this, a statistical analysis is implemented by implementing contingency tables and the chi-square test, carried out in the programming language R. This work showed that 32.2% of migrants entering the country are foreigners, also that the Countries with the highest recurrence of migrants leaving to this country are: Venezuela, Colombia, United States, and Peru. In addition, it was found that these migrations are related to factors such as tourism and residence. In conclusion, in this work, it was possible to verify that the contingency tables are still a good statistical instrument to determine the dependence that may exist between two determined variables.

        Downloads

        Download data is not yet available.

        References

        Cevallos-Torres, L., & Botto-Tobar, M. (2019). Case study: Logistical behavior in the use of urban transport using the monte carlo simulation method. In Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation (pp. 97–110). Springer.

        Cevallos Torres, L. J., MARTINEZ, V., AMERICA, N., & BARROS MORALES, R. L. (2017). Análisis Estadístico Univariado. grupo Compás-Universidad de Guayaquil.

        Guevara Santana, D. J. (2017). Analisis de la aplicacion de politicas para retorno de migrantes en el Ecuador, Periodo 2012-2015. UNIVERSIDAD DE GUAYAQUIL.

        Manzano, V. (2014). Chi cuadrado de pearson para dos variables nominales.

        Nievas, F. (2015). Informe de Gestión.

        Nievas, F. (2016). Pruebas de Chi Cuadrado para una sola muestra.

        Parra Vera, S. R. (2016). ANÁLISIS DE LA MIGRACIÓN EN LA COMUNIDAD ANDINA Y SUS MOTIVACIONES ECONÓMICAS. Universidad de Guayaquil.

        Ruiz-Ruano, A. M., & Puga, J. L. (2016). R COMO ENTORNO PARA EL ANÁLISIS ESTADÍSTICO EN EVALUACIÓN PSICOLÓGICA. Papeles del Psicólogo, 37(1), 74–79.

        Vásquez-De Kartzow, R., Castillo-Durán, C., & Lera M., L. (2015). Migraciones en países de América Latina. Características de la población pediátrica. Revista Chilena de Pediatría, 86(5), 325–330. https://doi.org/10.1016/j.rchipe.2015.07.007

        Published

        2020-03-22

        Issue

        Section

        Research Paper

        How to Cite

        [1]
        X. Álvarez, S. Ambuludí, and M. Tola Romero, “Statistical model to associate variables for determining the degree of linear dependence”, Ecuad. Sci. J, vol. 4, no. 1, pp. 8–13, Mar. 2020, doi: 10.46480/esj.4.1.51.

        Similar Articles

        1-10 of 137

        You may also start an advanced similarity search for this article.