Prediction of Covid19 with the use of Random Forests Algorithm and Artificial Neural Networks

  • Darwin Patiño Pérez Universidad de Guayaquil
  • Ricardo Silva Bustillos Villanova University
  • Celia Munive Mora DeSales University
  • Miguel Botto-Tobar Universidad de Guayaquil
Keywords: Covid19, Dataset, Neural Networks, Random Forest, Classification, Regression, Prediction

Abstract

Currently SARS-CoV-2 or Covid19 as it is known, has variants or mutations that spread rapidly affecting people, without the health professionals being able to detect it in a timely manner to give an adequate treatment and thus be able to control its spread. This manuscript describes the implementation of an analysis and prediction model of the spread of Covid19, which through artificial intelligence techniques related to Machine Learning, will allow the application of supervised learning strategies to programs developed in the Python programming language. so that when processing large volumes of data they can learn from past experiences and allow new inputs to be processed, generating prediction information quickly and reliably. The approach of making an analysis on a data set extracted from an open-source will serve to later carry out an exploratory analysis of the processed. Three predictions were made, which are: If the patient has SARS-CoV-2, days elapsed until mortality and mortality from covid, using classification and regression algorithms that, according to previous studies, allowed the selection and application of the Random algorithmic model Forest and Artificial Neural Networks whose reliability metrics allow us to accept the expected predictions for an adequate decision making.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Control de Inventarios y su Aplicación en una Compañía de Telecomunicaciones [Online]. s.f. http://www.scielo.org.mx/scielo.php?pid=S140577432007000400003&script=sci_arttext&tlng=en.

[2] Estadística Aplicada a los Negocios y la Economía 13 Edition. . s.f.

[3] Fundación Metrovia [Online]. s.f. https://www.metrovia-gye.com.ec/inicio.

[4] L. J. Cevallos-Torres, ., y Miguel Botto Tobar. «Pseudo-Random Numbers and Congruential Methods.» En Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation, 32-58. Guayaquil: Springer, 2019.

[5] L. J. Cevallos-Torres, LJ, y Miguel Botto Tobar. «Case Study: Probabilistic Estimates in the Application of Inventory Models for Perishable Products in SMEs.» En Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation, 123-132. Guayaquil: Springer, 2019.

[6] L. J. Cevallos-Torres, y Miguel Botto Tobar. Análisis Estadístico Univariado. Guayaquil: Equipo Editorial, 2017.

[7] L. J. Cevallos-Torres, y Miguel Botto Tobar. «Logistical Behavior in the Use of Urban Transport Using the Monte Carlo Simulation Method.» En Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation, 97-110. Guayaquil: Springer, 2019.

[8] L. J. Cevallos-Torres, y Miguel Botto Tobar. «Monte Carlo Simulation Method.» En Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation, 87-96. Guayaquil: Springer, 2019.

[9] Modelo de revisión periódica para el control del inventario en artículos con demanda estacional. Una aproximación desde la Simulación [Online]. s.f. https://www.redalyc.org/pdf/496/49613703.pdf.

[10] Modelos de Gestión de Inventarios con Cadenas de Abastecimiento [Online]. s.f.http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/18765/16074.

[11] Stat::Fit [Online]. Available: http://promodel.com.mx/stat-fit/. s.f.
Published
2020-09-30
Stats
Abstract 37
PDF (Español (España)) 41
How to Cite
Patiño Pérez, D., Silva Bustillos, R., Munive Mora, C., & Botto-Tobar, M. (2020). Prediction of Covid19 with the use of Random Forests Algorithm and Artificial Neural Networks. Ecuadorian Science Journal, 4(2), 101-110. https://doi.org/10.46480/esj.4.2.41
Section
Research Paper
Share |
Citation

Most read articles by the same author(s)